Physics 2424 Schrodinger’s Equation

The diagram below shows two finite square wells. How would you expect the energy
levels in (b) compare to the levels in (a)?

(a) (b)

| > |
-»L 7 L x -L
The wavelength of the lowest energy level approximately the width of the well, so the

wavelength in (b) should be approximately double that in (a) for the same eigenstate. As
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a result, the wave number halves for each level. Since £ = , thus £, OYE,.
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Consider the two finite square wells below. How would you expect the energy levels in
(b) compare to the levels in (a)? Which will be larger?
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The wavelength of the lowest energy level approximately the width of the well, so the
wavelength in (b) should be approximately equal to that in (a) for the same eigenstate.
There is a difference in the behaviour of Y(x) in the region outside the well. For (a), Y(x)
can be expected to decay much faster than in (b) since V — E is much greater. Thus the

wavelength in (b) will be slight longer than in (a). As a result, the wave number in (b) is
272

slightly smaller than in (a). Since E = h2
m

, thus £y, <= E,.
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Consider the two finite square wells below. How would you expect the energy levels in
(b) compare to the levels in (a)? Which will be larger? Sketch Y(x) for the first three
levels in (b).

(a) (b)
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The wavelength of the lowest energy level approximately the width of the well, so the
wavelength in (b) should be approximately equal to that in (a) for the same eigenstate.
There is a difference in the behaviour of Y(x) in the region outside the well. For (a), Y(x)
can be expected to decay much faster than in (b) on the right-hand side since V — E is

much greater. Thus the wavelength in (b) will be slight longer than in (a). As a result, the
272

wave number in (b) is slightly smaller than in (a). Since £ = , thus Ey, <= E,.

The first three energy levels would look like

n=1 n=2




4. Sketch Y(x) for the following potential well at the indicated energy levels.
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For E4, in the regions x < 0 and x > 0 the exponential decay will be at the same rate. For x
> L and x < 2L, V > E; so we get exponential terms but they must meet. For the
sinusoidal regions, 0 < x < L and 2L < x < 4L, at energy E;, we have a double well.
Therefore we expect one antinode in each well. Now A is approximately L in the left well
and A\ O2L. Since kinetic energy is proportional to 1/A%, Ex is bigger on the left than on
the right, so the amplitude is higher on the left. We expect something like
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Solving an actual well, we get the following diagram. Note that there is hardly any
noticeable bump in the first region.
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For E;, the entire region 0 < x < 4L is sinusoidal. We will need seven antinodes. The
wavelength with be large is the regions 0 < x <L and 2L < x < 4L but small in the region
L <x <2L. Also the amplitude will be larger in L < x < 2L than elsewhere. We expect
something like
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A exact solution to a similar well is shown below and has the general feature we have
discussed.
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5. Sketch Y(x) for the following potential well at the indicated energy levels.
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For the first energy level E;, the exponential decay regions are somewhat different. To
the right it will take longer to decay. In the sinusoidal region, we have an ordinary well,
so we expect one simple antinode.
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For the fifth energy level Es, the exponential decay regions are the different with the
decay faster on the left. In the sinusoidal region, we expect five antinodes. For the region
L <x <2L, KE is smaller so the wavelength is larger as is the amplitude as compared to
the region 0 < x < L. Thus we expect
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Sketch the V(x) for the following Y(x). Identify n, the energy level.

(a) There are six antinodes so this is E¢. The amplitude and wavelength doesn’t appear to
be changing so this is a flat-bottomed well. The right hand side is decaying faster, so we
appear to have
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(b) We have six antinodes so this is E¢. The amplitude increases from left to right and the
wavelength decreases. The well has a ramp. The sides seem to be decaying at about the
same rate.
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(c) There are six antinodes so this is Eg. The left side is discontinuous, the sign of an
infinite potential on that side. The amplitude is high and wavelength is small for the first
two nodes suggesting high KE then amplitude decreases and wavelength increases
indicating low KE. The potential well appears to have two levels. Therefore it probably
looks like
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For 5(x) in the infinite square well potential, determine <x>, <x*>, and Oy.

For the infinite square well, the third level is given by
W, (x) = Q\/ismﬁ'Lﬁ 0<sx<L
0 otherwise

The expectation value of x is
_ L L
= dx=—.
=x _! S () x5 (x)dx 5

The expectation value of x° is

<x2>:_ } (x)x L/I3(x)dx @é— ! élz.

2
4 181

The uncertainty in x is given by

—\x-x =3 2L 0027876 L.

6711
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For 3(x) in the infinite square well potential, determine <p>, <p*>, and 0.

First we have to see what p,, and (pop)2 do to Y3(x). We have
0 A2 a2 o P
X)= Eﬁ— —sm —zh— —COoS
pop¢’3( ) |:|l ax L DL |:|
Next

(P,,)"W5(x) = Eﬁ g —smEB—H— ai%ﬂh%[ %COSDW% hzmﬂg

i Ox [ 0

hlt\)

I:I
5'

|

So the expectation value of p is
_ L @ 0
= [y, (x)O0-— x)dx =0.
[ed
Similarly the expectation value of p” is

(P)

The uncertainty in p is given by

97T h2

r’

[ gws( ) =

ppt =
pimp ==

Using the value of oy from the previous question, we can check the value of 0,0,. We
find

3 , 1 /]
oo =NclNp=.|—11" ——HU02.63%>—.
.0, Ap 1 5 5
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For Ys3(x) in the finite square well potential, determine <x>, <x*>, and 0. Use MAPLE if
you wish. Take V=8 eV, L =1 nm, E5=2.573490 ¢V, and m.=0.511 MeV.

As we have seen the even wavefunction solutions to a finite square well are given by

B Ae™ x<—%
¢l3(x):%Bcos(kx) —gs)cs%
O
_ L
0 ge ™ x>=
H 2

Where k = 1/2—21E and a =, /2—’? (V -E ) . Continuity at the boundary indicates that
h h

i} L . . .
A=Be™ ™" cos%@ The value of the constant B is set by the normalization requirement

that jo'L,U; (x5 (x)dx =1. Evaluation of the integral yields B = 0.764063.
The expectation value of x is
<x> =x= jiw; (x)x5(x)dx =0.
The expectation value of x° is
<x2> =x? = iw;(x)le./l3(x)dx =0.0362522nm*

The uncertainty in x is given by

o =Vx’—x 00.190400nm.
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10.

For J3(x) in the finite square well potential, determine <p>, <p*>, and 0,. Use MAPLE if
you wish. Take V=8 eV, L =1 nm, E5=2.573490 ¢V, and m. = 0.511 MeV.

First we have to see what p,, and (pop)2 do to Ys(x) shown in the previous question. We

9
know p,, W, (x) = %5%3@). Thus

U ﬁaAe"”‘ x<—£
., z
@.i%g(ﬂ = D-E.kBsin(kx) Lot
i Ox 0 lh 2 2
O - Zgde™ x> =
B i 2
0
Also (pnp)zllls(x) = %ag% (x). Hence
B -hla*de™ x < —%
0 272 L L
-— = k°B kx —Z<yx<=
O-r’a?4e™ X >£
= 2

T 0 _
() =p= [ S Wb =o
Similarly the expectation value of p” is
J— © . a
2\ _ 2 _ o 2
(p*)=p [v: (x)él?ax g%(x)dx 019.7163997.

The uncertainty in p is given by

N
o,=\p’-p 04.440315n.

Using the value of oy from the previous question, we can check the value of 0,0,. We
find

0,0, =AxAp 110.8454367 > E
2
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11.

For x(x) in the simple harmonic oscillator potential, determine <x>, <x>>, and 0,. Use
MAPLE if you wish.

2m

2
The text gives [_IJz(x) as wZ(x):AZE_ nid %—max /Zh. We need to normalize the

h

o /4
* w
function to find 4,. Evaluatin X x)dx =1 yields 4, = &S .
2 g_jwllfz( W, (x) y 2 B 0
The expectation value of x is
<x> =x= Iw;(x)x(,tlz (x)dx =0.

The expectation value of x° is

Sh

(x*)=x"= iw;‘u)x%uz(x)dx =%

The uncertainty in x is given by

o =Vx’—x = ‘/—Sh .
’ 2mw
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12.

For Y,(x) in the simple harmonic oscillator potential, determine <p>, <p2>, and 0,. Use
MAPLE if you wish.

First we have to see what p,, and (pop)2 do to Y,(x). We have

e
| I:D—
crgH

+

N

3

>

3

§N

/4 5
poplljz(x) @a %Q E—zm;‘x —mwxz/th

= Im QX
B (W1t

Next

PR (x) = Hi Hmaop” E 2mad” B on

i ox D@mm

which is so complicated it is best left to MAPLE.

The expectation value of p is

- ” * a

=p= X EE— x)dx =0.

p= U )

Similarly the expectation value of p” is
— _ d Smon
N=p*= () G-— xX)dx =——.

(r?)=p = [uic )éf}axgwx) .
The uncertainty in p is given by

Using the value of Oy from the previous question, we can check the value of 0,0,. We
find

5 7]
o0 =NxNp=—h>—.
e Y 2 2
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13. Consider the step potential as shown below. Imagine that a beam of particles comes from
the right instead of from the left as considered. Find expressions for R and T in this case.

A
Vv <4—
Vo
>
0 X

In the incoming region, 0 < x the expression for the wavefunction is
qJI(X) _ Aeiax + Be-iax'
The first term represents the incident particles moving to the right. The second term
represents reflected particles moving to the left. Note that it is the discontinuity in
potential not the barrier itself that leads to reflected particles. Note a* = 2m(E-V)/k’
In the transmission region, x <0 , the wavefunction will have the form
_ ikx

l.IJH(X) =Ce .
There will be no particles moving to the right. Note k* = 2mE/k’.
Continuity at x = 0 requires C = A + B and kC = a(A — B). Solving for C and B in terms

of A we find C = 2aA/(a+k) and B = A(a-k)/(a+k). The fraction of reflected particles is
given by

The rest of the particles are transmitted so

rT=1-gr=_2%%
(a+k)’

The form of the equations is identical to that for particles travelling the other way.
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