
P2424   Energy & Momemtum 
 
 
1. The radioactive element 238U decays via the emission of an alpha particle (a 4He nucleus, 

symbol α). What is the other decay product? How much energy is released? All this 
energy is in the form of the kinetic energy of the decay products.  How fast is the alpha 
particle travelling? 

  
 A 4He nucleus has 2 neutrons and 2 protons while 238U, an isotope of Uranium is element 

92, and thus has 92 protons and 238 – 92 = 146 neutrons. The decay products are found 
by conserving neutrons and protons.  The other decay particle will have 92 – 2 = 90 
protons, so it is element 90 which is Thorium. The particular isotope will have 146 – 2 = 
142 neutrons. The isotope number is the total number of nucleons, protons and neutrons, 
= 90 + 142 = 238 – 4 = 234. The element is 234Th. The decay is thus 238U →  234Th + 4He. 

 
 From the text, Appendix A, the masses are 238.050784 u, 234.043593 u, and 4.002602 u 

respectively. The mass difference between the sides is ∆m = (238.050784 u) – 
(234.043593 u + 4.002602 u) = 4.589 × 10-3 u. This missing mass goes into the kinetic 
energy of the particles. The amount of kinetic energy is  

 
∆m = 4.589 × 10-3 u × 931.49432 Mev/c2/u = 4.2746 MeV/c2. 

 
To find the speed we note that momentum must be conserved. If the 238U was initially at 
rest 

 
 γ(uT)mTuT = γ(uα)mαuα . (1) 
 
Also the energies must be conserved 
 
 γ(uT)mTc2 + γ(uα)mαc2 = γ(0)mUc2 .  (2) 

  
 Now γ(0) = 1 since the uranium atom is at rest. However, these are messy equations and 

are messy to solve algebraically. Solving numerically we find uT = 0.000812 c and uα = 
0.047447 c. 
 
(In this problem, I have not taken into account the fact that electrons do not accompany 
the alpha particle which is He++ as a result. This does not change the result.) 



2. A neutron outside the nucleus β decays into a proton, an electron, and a neutrino.  Note 
that n =  1.008665 u, p = 1.007285 u, and e = 5.48578 × 10-4 u. 
(a)  Assuming the neutrino is massless, how much energy is released? 
(b)  Assuming that all this energy is converted into the kinetic energy of the electron, how 

fast is the β electron moving? 
(c)  If you ignored relativistic effects, how fast would the electron be moving. 

 
(a)  The β decay reaction is n → p + e + ν.  The difference in mass between the left and 

right-hand sides of the reaction is converted into energy according Einstein’s formula, 
E = (∆m)c2.  The mass difference is 

 
∆m = 1.008665 u – 1.007285 u – 0.000549 u = 0.000831 u . 

 
Converting to energy, this is 
 

∆m = 0.000831 u × 931.5 MeV/c2 = 0.7741 MeV/c2. 
 
So E = ∆m c2 = 0.7741 MeV. 

 
(b)  The relativistic kinetic energy is Ek = γ(u)mc2 – mc2 = [γ(u)–1]mc2. The rest energy of 

the electron is 0.5110 MeV. So γ(u) – 1 = 0.7741/0.5110 and we need to solve for u. 
First γ(u) = 2.5149.  Squaring both sides and inverting yields 1 – (u/c)2 = 0.1581.  
Thus u/c = 0.9175 or u = 2.751 × 108 m/s. 

 
(c)  For the non-relativistic case, Ek = ½mu2.  Solving for u, we get 
 

u/c = [2E/mc2]½ = [2(0.7741)/(0.5110) ]½ = 1.7406 
 

or u = 5.218 × 108 m/s. This value exceeds the speed of light. 
 
 

 
 



3. Beta decay can occur inside a nucleus with the proton remaining inside the daughter 
product while the electron and neutrino escape. As can be seen from Appendix A of 
Tipler, 11Be decays this way.  Write out the decay formula. Assuming that the neutrino is 
massless, determine the recoil speeds of the decay products. 

 
 The radioactive element 11Be had 11 nucleons, 4 protons and 7 neutrons. After the beta 

decay one neutron becomes a proton, so we still have 11 nucleons but now there are 5 
protons and 6 neutrons. The element is 11B. Thus the reaction is 

 
11Be → 11B + e + ν . 

 
The difference in mass between the left and right-hand sides of the reaction is converted 
into energy according Einstein’s formula, E = (∆m)c2.  The mass difference is 
 

∆m = 11.021657 u – 11.009305 u – 0.000549 u = 0.011803 u . 
 

Converting to energy, this is 
 

∆m = 0.000831 u × 931.49401 MeV/c2 = 10.9944 MeV/c2. 
 
So E = ∆m c2 = 10.994 MeV. 

 
 Let’s assume the 11Be was at rest. Conservation of momentum yields 
 

 γ(uT)mTuT = γ(uα)mαuα . (1) 
 
Also the energies must be conserved, assuming the neutrino has negligible energy, 
 
 γ(uB)mBc2 + γ(ue)mec2 = γ(0)mBec2 .  (2) 

  
 Now γ(0) = 1 since the 11Be atom is at rest. However, these are messy equations and are 

messy to solve algebraically. Solving numerically we find uB = 1.120 × 10-3 c and ue = 
0.9990 c. 

 
  
 



4. Consider 31P which has 15 protons and 16 neutrons.  Find the binding energy per 
nucleon.  Note that n = 1.008665 u, 1H = 1.007825 u, and 31P = 30.973762 u. 

 
The binding energy is the energy difference between the atom 31P and its nucleons 
separately.  It appears as a mass difference between the two.  The binding energy is then 
given by Einstein’s formula, E = (∆m)c2.  The mass difference is 
 

∆m = 15(1.007825 u) + 16(1.008665 u) – 30.973762 u =  0.282253 u . 
 

Converting to kg, this is 
 

∆m = 0.282253 u × 931.5 MeV/c2/u = 262.92 MeV/c2. 
 

Dividing this by the number of nucleons (15 + 16 = 31), we find 
 

Eper nucleon = 262.92 MeV / 31  = 8.48 MeV 
 
 
 
 
 
 
 
5. Can 14C decay into 12C through the spontaneous emission of two neutrons? 
 

The decay would be  
 

14C → 12C + n + n. 
 
Referring to Appendix A of Tipler we see 14C = 14.003242 u, 12C = 12.000000 u, and n = 
1.008665 u. The total mass on the right-hand side is 14.017330 u. So energy would need 
to be supplied to the 14C; it would not occur spontaneously. 


