Physics 2424 Atoms

The probability of spontaneous transitions of a charged particle from one initial energy
level to another final level is governed by the overlap integral

D, =q[Fyy,dv,

where ¢ is the charge of the particle. If 130 =0 between two levels, the transition is

forbidden. Searching for such forbidden transitions leads to selection rules. Consider the

3D infinite potential well.

(a) Show that only allowed transitions from (a3 are to a state where two of the
quantum numbers are unchanged and the other quantum number changes by an odd
number like 1, 3, 5, etc.

(b) Show that the emitted photons have energies £ = p(2n — p)E; where the n is the
original quantum level and n — p is the final quantum level and E,; is the ground state
energy of the one-dimensional potential well.

The following integral identities are useful:
O L2
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The wavefunction for the symmetric 3D potential is given by

l,l/(x,y,z):singqusianwEsinﬁomB
OL 0O OL 0O OL O

Also 7 =ix + jy + kz. The overlap integral therefore is

LLL
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Considering the x component we find
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The y and z integral will give zero unless my= m; and oy= o;. To have a transition we
have to go from one state to a different state that is ny# n;. The transition is therefore
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D, = 62]422 ninfl-(_l)m-nf _1J LL wheren, % n,.
 {n=n, Flo+n, f 22 |

Now if n; — nsis an even number, |_(— 1)"”_"’ - IJ will vanish and Dy, will be zero. If n; — ny

is an odd number, |_(— 1)"”_"’ - IJ will equal —2 and thus Dy, will be finite.

The y-component of the overlap integral will be

—eIsmBn Esm /7 xJ'ysmanH;mRnf %’J’smBO EsmHO/mEi

0

But this is identical to the expression for Dy, with x and y interchanged. Exactly the same
occurs with D,;.

So it is clear that the only transitions that have a non-zero overlap, and hence emit a
photon, are those where two quantum numbers remain unchanged and the third changes
by an odd number.

The energy levels of the 3D symmetric potential well are given by Em, = E1(n* + m* +
0%), where E; is the ground state energy of the 1D infinite square well. If the transition is
from n to n — p, the difference in energy is

AE = Euno— E(n-p)mo

E1(n2 +m° + 02) —E|([n —p]2 +m + 02)
E((n*—[n—pl)

p(2n—p) E;
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For the hydrogen atom prove the selection rules Am = 0 or +1 and A/ = £1. Remember, in
spherical coordinates, 7 =irsin@sin@+ jrsin0 cos@+ krcos8 . Make use of symmetry

2m A ei(p _ e—i(p ip + e—i(ﬂ
where possible. The identities Ie"”"’dqo: 0,, , SIn@= D and cos@ =
i
0

may be of use.

The wavefunctions for the hydrogen atom have the form ,;,, = AR,.()fin(O)gn(@), where
A is a normalization constant. The overlap integral indicates possible transitions

D, =q[ryy,av.
Let the initial state be denoted by n/m and the final state by gsz. Now note that the only
imaginary term is gn(¢) = €"® and its complex conjugate will be [gn(@)]* = ™% = g.n(Q).
The overlap integral will be

T2

50 = eJ.J.J.’_;Rnlf}mg—qusfstgtrz Sin edrdﬁdqo
000

2m

= ie}Rn, 3a’r-rf,m ., sin HdHJ'g n& SINQQ+
0

2m

je R,R,7 drIf,m ., sin Gdej'g ., cosqp+

) 2

ke anRq.s’”3d’”Ifszz cos@sdeBJ'g .g,do
0

Using the given identities, the @ integrals become

2m 2m —i .27
e 4

Ig n&, SINQEQ = I e '"pez—ia@: %ZI( e — e Hl))flq’_ O, i1 _5m,t—l)
0

and

2 2m 27
B @l = -ing,, zt(pe +e” :l =i(m=t=1) y ,=i(m=t+1) §0=l 5m . +5m )
Ji.s cosalo= e o1 [l o=L ., 0.,
and
2m 2m

[gnedo= j‘””‘” e'*dg= j " dp=3,,
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So we see that to get a non-zero contribution from the @integral we need f=m ort=m +
1, that is Am = 0 or 1.

To determine the selection rule for /, we need to investigate the symmetry of sin(6) and
cos(0), and f;,(0) over the range 0 <O < TU

First sin(0) is even and cos(0) is odd about the centre value TU2. Next consider the
generating function for f,,(0),

+m|

sin"(6)0)_d (cosz(e) - ly.

2'n Hi(cos(@)H

Jm(0)=

The sin™\(0) portion is even. The term (cos*(8) — 1)’ only has even multiples of cos(6),
with leading term cos*(6), so it is even. Applying the first derivative yields odd multiples
of cos(8), with leading term cos® = '(), so it is odd. The next derivative returns even
multiples again, so overall it is even. The subsequent differentiations change from odd to
even, and on and on. Therefore, if / + |m| is even then f;,,(0) is even, and if [ + |m| is odd
then fin(8) is odd. Also notice that the leading term after all the differentiations is cos™ -
V(@) = cos"™!(). The term after that will be cos’ ™"~ (8) and so on.

Now consider the 8 integral of the D,, term where we already know ¢ = m,

Ifszw cosB@sinBdo .
0

The symmetry of this integral is determined by the leading term in the integrand,
cos' 1"(0) cos® () cos() sin®™ T (0) = cos' "1 2"(B) sin®™ T (0) .

For this term to be even, / + s + 1 — 2|m| must be even. This demands that / + s be an odd
number.

Now consider the 8integral of the D, and D, terms where we already know t=m * 1,

Iﬁ,mf;',mil Sin2 9 de .
0

The symmetry of this integral is determined by the leading term in the integrand,
cos'” ""‘(e) cos’” |"’J"”(G) smz"”'*z(e) = cos’ TS AmIEL () sinz‘mm(ﬁ) .

For this term to be even, / + s — 2|m| £ 1 must be even. This demands that / + s be an odd
number.
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So in each case we require A/ = +odd. We next need to now see why A/ = 1.

To be continued!
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Are L, L,, L. or L eigenfunctions of {/x) for the 3D potential well?

The wavefunction for the symmetric 3D potential is given by

Y(x,y,z)= sinEhnjC EsinEww EsinEpm B
OL 0O OL 0O OL O

These operators are eigenfunctions of Y/x, y, z) if, when they operate on YAx, y, z), they
yield a constant, i.e. Oy = K.

The first operator is L, = y@iB— z i Operating on YAx, y, z) above yields
i 0z[O [Ji Oy

. TT¢ ory . % TE Emrk . 174
thll—smEhL % 7 SIHEWL E{:OSEPL E—i 7 cosgnL ESIHEPL %
This isn’t an eigenfunction.

The second operator is L = z@i B— xE@iB Operating on Y(x, y, z) above yields
Yo Oioxg [io0zQ

. 1% nic . [pre[] hofx . T 4
Lytll—smgnL % . COS?L EsmépL Q_i I smg'L ELOSEPL %
This isn’t an eigenfunction.

The third operator is L, = x=- 9 yEﬁi El Operating on YAx, v, z) above yields
i dy i Ox [0

_ . [bredh mmnx . [hik W[ hniy T[] Iy
Lxl,U—smépL % 7 s1n§lL él:osgnL @_i I COSEWL %m@i %

This isn’t an eigenfunction.

Now L*=L*+ Ly2 + L.%, so we need to reapply the operators above. We find
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L(Lw)—hzsm&@g+mg 1nMEsin TEH
0 0Log 6L 0 0L
+2mm}0mcosE‘mryﬁ:osE@H

L L OL 0O O

L O

+ﬂcoswginE‘omﬁ+Omsingnmgosﬁom%
L OL O OL O L OL O OL

Similarly
. 8. Q. e
L(LYy)=n Sméh@LQ-FQLLQESmDL %mDL E
2n7‘lx ore SB"WB: SBO—TEH
L L oL O

+ COSEWW Esinﬁom H+ ore sinEknrgV B:OSBOE%
L OL O OL O L oL O 0OL

and

Ly(Lyw)thsinﬁom%nmg+B’ g%m mB;mMH
L. O 0L of

+2nmmmcosEhmEcos%H
L L oL 0O OL O

+ n coanrDC EsinEk"rg/ B+ mry sinB’m B:OSM%
L oL O oL O L OL O OL

I:I
EI
|
~
|

Adding the above results, to get L*= (L,* + Ly2 + L.*) to does not reduce to a constant
times Y so this isn’t an eigenfunction either.
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) . ) ) _ n .
Determine <r>, <r2>, and o; for ;9. The integral identity J'x”e “dx = — i helpful.
a

From the text,

Wi = R,y (1Y (0,9) = \/— %%eir% )

The expectation value of 7 is given by

<r> = Ir(,ll*(,lldV

3 om

4 Oz O~ /ay
E%Eb{ s er'sm BdBquo

3

i z J'r3e_22r/”°drEEDZIT
4, 09

Ea%@/)

le

Qo
V4
Since Z =1 for hydrogen, <r> = ay,.

Similarly, the expectation value of /* is given by
(r*) = Irzt,ll*(lldV

B 4 7 3 e, 2m
_E%E!' e 24! dr'rsm GdGJ'd(p

:i:lZED 4 2 27T
4m 27/ )3
0 (%)
0
a2

3Z2

Since Z = 1 for hydrogen, <r”> = 3qy.

Thus 0, =r’> -7> = \/%ago Since Z = 1 for hydrogen, 0, = \/gao
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Determine <p;>, <p;*>, and @, for Yi00. Note (p,),, = ‘ihai and

r
(), 2o L 25 0B 20

r 2

rror orQ] r r or

2 Z -
From the previous question, {/,,, = — \ / % % e /% Thus
100 (47_[ .
. a . 2 Z Z —Zr/a
PWio = "ih—,, =ih— %% —e 7%
100 ar 100 (4n_ . ClO

The expectation value of p, is given by
. 0
= B‘ ih—[@dV
.r v 0 or Ql
= —ih i %E r?
4, 14

= —ihi%EIrze_m/““dr 2121
4, 04

2m

o244 dr'[sm 0 dBJ'd(p

Since Z =1 for hydrogen, <p,> = -ifi/ay.

Now (o o =555+ B =- %@%@

The expectation value of p,” is given by
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If electrons were spinning balls, they would have moment of inertia = %/sMR* and spin
angular momentum S = /w. The maximum speed at which the outside edge of a real ball

electron could be spinning is the speed of light. Since we know‘g‘ ={s(s+n = \/gh,

what value of R does this imply? Note that experiment has shown that electrons act like
point particles down to distances below 107> m.

The speed of the outside edge is v = Rw. Thus we have %MR2 % = \/gh Solving for R

=8.36x10" nm. Note that this

_ 135 hc _ |35 197.33eV am
we find R= |-———=,/-— <
4 2 Mc 4 20.5109989 x10° eV

implies that the intrinsic quantum mechanical angular momentum called “spin” has no
relation to the spin angular momentum of classical mechanics.

The deuteron is a hydrogen atom with an extra neutron in the core. The effects the
reduced mass M in our equation for E,. If m, = 1836 m. and m, = 1839 m., find the
wavelengths of light necessary to ionize a hydrogen atom and a deuteron. What is the
difference in these two wavelengths?

The equation for the energy levels of either version of hydrogen is given by

2
E = LZ E%% where Z =1, u = L, and my1is the mass of the nucleus. When
1+

" 2n m/
my

we deal just with hydrogen my = m, and Ef = 13.62eV . For the deuteron, my = m, + m,,

n

2 2 1+ e

m,_+m
EP = H—DZ ze é = “_DLZ Ze E = P n 13'626V . Using the given values
2n h Uy 2n h 1+ e n
m!’
D 13.6eV ..
for the masses, we find £, =0.999728 -— . To ionize each atom we need E). The
n

wavelength in each case is A, = he _12398eV Lim _ 91.162 eV,

E" 13.6

A, = e - 12398eVlim 91.187 eV, and the difference is only 0.025 nm.

EP  (0.999728)(13.6¢V)




10.

We can define the effective charge that an electron sees by the formula

E
E = Zjﬁ, —;)where Eo=13.6 eV. The electron configuration of sodium is 1s*2s*2p®3s. If

the inner electrons fully shielded the valence electron from the core, what would Zs be?
How much energy would be needed to remove the valence electron from sodium in this
case? The actual ionization energy of sodium is 5.1 eV. What is the true Z.g?

From the electron configuration we see that the sodium valence electron has n = 3. If the
valence electron was fully shielded then, E; = 12 (13.6 eV)/3* = 1.51 eV. This is the
amount of energy needed to remove the electron from the » = 3 level. Knowing the
correct value we see

En’ 5.1
= = = =1.84.
7 E 1.51

n

Z

Potassium has an electron configuration 15°2s*2p®3s*3p®4s and an ionization energy of
4.3 eV. What is the true Z.g? See previous question.

From the electron configuration we see that the potassium valence electron has n = 4. If
Using the previous formula

2
7, = [Ea [(43)16) _, s
7\ E, 13.6

Write the electron configurations for the following, use only Fig. 7-19 of the text which
shows the relative energies of the atomic shells and subshells.

a) Rubidium, Z = 37.

b) lodine, Z = 53.

We have to fill the orbitals shown in Fig. 7-19 starting at the lowest level and stopping
when we run out of electrons. The order of filling and number of allowed electrons is ls
(2e), 2s (2e), 2p (6e), 3s (2e), 3p (6e), 4s (2e), 3d (10e), 4p (6e), 5s (2e), 4d (10e), 5p
(6e), 6s (2e), 4f (e), 5d (14e), 6p (Ge) ...

Hence

a) Rubidium - 15725°2p°35°3p 4s”3d'4p°5s’

b) lodine - 15%252p%35*3p%4s*3d"4p°55%4d"5p°
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