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5  Physics 2424 Atoms 
 
 
1. The probability of spontaneous transitions of a charged particle from one initial energy 

level to another final level is governed by the overlap integral 
 

∫= dVrqD fio ψψ *rr
, 

 
 where q is the charge of the particle. If 0=oD

r
 between two levels, the transition is 

forbidden. Searching for such forbidden transitions leads to selection rules. Consider the 
3D infinite potential well.  
(a) Show that only allowed transitions from ψn1,n2,n3 are to a state where two of the 

quantum numbers are unchanged and the other quantum number changes by an odd 
number like 1, 3, 5, etc. 

(b) Show that the emitted photons have energies E = p(2n – p)E1 where the n is the 
original quantum level and n – p is the final quantum level and E1 is the ground state 
energy of the one-dimensional potential well. 

 
The following integral identities are useful: 
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 The wavefunction for the symmetric 3D potential is given by  
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Also zyxr kji ++=r . The overlap integral therefore is 
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 Considering the x component we find 
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 The y and z integral will give zero unless mf = mi  and of = oi. To have a transition we 

have to go from one state to a different state that is nf ≠ ni . The transition is therefore 
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 Now if ni – nf is an even number, ( )[ ]11 −− − fi nn  will vanish and D0x will be zero. If ni – nf 

is an odd number, ( )[ ]11 −− − fi nn  will equal –2 and thus D0x will be finite. 
 

The y-component of the overlap integral will be 
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But this is identical to the expression for D0x with x and y interchanged. Exactly the same 
occurs with Doz. 
 
So it is clear that the only transitions that have a non-zero overlap, and hence emit a 
photon, are those where two quantum numbers remain unchanged and the third changes 
by an odd number. 
 
The energy levels of the 3D symmetric potential well are given by Enmo = E1(n2 + m2 + 
o2), where E1 is the ground state energy of the 1D infinite square well. If the transition is 
from n to n – p, the difference in energy is 
 

∆E = Enmo – E(n-p)mo 
= E1(n2 + m2 + o2) – E1([n – p]2 + m2 + o2) 
= E1(n2 – [n – p]2) 
= p(2n – p) E1 
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2. For the hydrogen atom prove the selection rules ∆m = 0 or ±1 and ∆l = ±1. Remember, in 
spherical coordinates, θφθφθ coskcossinjsinsini rrrr ++=r . Make use of symmetry 

where possible. The identities 0
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may be of use. 
 
 The wavefunctions for the hydrogen atom have the form ψnlm = ARnl(r)flm(θ)gm(φ), where 

A is a normalization constant. The overlap integral indicates possible transitions 
 

∫= dVrqD fio ψψ *rr
. 

 
 Let the initial state be denoted by nlm and the final state by qst. Now note that the only 

imaginary term is gm(φ) = eimφ and its complex conjugate will be [gm(φ)]* = e-imφ = g-m(φ). 
 
 The overlap integral will be 
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Using the given identities, the φ integrals become 
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So we see that to get a non-zero contribution from the φ integral we need t = m or t = m ± 
1, that is ∆m = 0 or ±1. 
 
To determine the selection rule for l, we need to investigate the symmetry of sin(θ) and 
cos(θ), and flm(θ) over the range 0 ≤ θ ≤ π.  
 
First sin(θ) is even and cos(θ) is odd about the centre value π/2. Next consider the 
generating function for flm(θ), 
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The sin|m|(θ) portion is even. The term (cos2(θ) – 1)l only has even multiples of cos(θ), 
with leading term cos2l(θ), so it is even. Applying the first derivative yields odd multiples 
of cos(θ), with leading term cos2l - 1(θ), so it is odd. The next derivative returns even 
multiples again, so overall it is even. The subsequent differentiations change from odd to 
even, and on and on. Therefore, if l + |m| is even then flm(θ) is even, and if l + |m| is odd 
then flm(θ) is odd. Also notice that the leading term after all the differentiations is cos2l - (l - 

|m|)(θ) = cosl-|m|(θ). The term after that will be cosl - |m| - 2 (θ) and so on. 

Now consider the θ integral of the Doz term where we already know t = m,  

∫
π

θθθ
0

sincos dff smlm . 

The symmetry of this integral is determined by the leading term in the integrand,  

cosl - |m|(θ) coss - |m|(θ) cos(θ) sin2|m| + 1(θ) = cosl + s + 1 - 2|m|(θ) sin2|m| + 1(θ) . 

For this term to be even, l + s + 1 – 2|m| must be even. This demands that l + s be an odd 
number. 

Now consider the θ integral of the Dox and Doy terms where we already know t = m ± 1,  
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2
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The symmetry of this integral is determined by the leading term in the integrand,  

cosl - |m|(θ) coss - |m±1|(θ) sin2|m|+2(θ) = cosl + s - 2|m| ± 1 (θ) sin2|m|+2(θ) . 

For this term to be even, l + s – 2|m| ± 1 must be even. This demands that l + s be an odd 
number. 
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So in each case we require ∆l = ±odd. We next need to now see why ∆l = ±1. 

To be continued! 
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3. Are Lx, Ly, Lz or L2 eigenfunctions of ψ(x) for the 3D potential well? 
 

The wavefunction for the symmetric 3D potential is given by  
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 These operators are eigenfunctions of ψ(x, y , z) if, when they operate on ψ(x, y , z), they 
yield a constant, i.e. Oψ = Kψ. 
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 This isn’t an eigenfunction. 

 The second operator is 
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 This isn’t an eigenfunction. 
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 This isn’t an eigenfunction. 

 Now L2 = Lx
2 + Ly

2 + Lz
2, so we need to reapply the operators above. We find 



 5-7 















+











+












+




































+











=

L
zo

L
ym

L
zo

L
zo

L
ym

L
ym

L
zo

L
ym

L
zo

L
ym

L
zo

L
ym

L
zm

L
yo

L
xnLL xx

ππππππ

ππππ

πππππψ

cossinsincos

coscos2

sinsinsin)(
22

2h

 

Similarly 
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Adding the above results, to get L2ψ = (Lx
2 + Ly

2 + Lz
2)ψ to does not reduce to a constant 

times ψ so this isn’t an eigenfunction either. 
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4. Determine <r>, <r2>, and σr for ψ100. The integral identity 1
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 Since Z = 1 for hydrogen, <r> = ½a0. 
  

Similarly, the expectation value of r2 is given by 
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 Since Z = 1 for hydrogen, <r2> = 3a0. 
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5. Determine <pr>, <pr
2>, and σp for ψ100. Note ( )
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The expectation value of pr is given by 
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 Since Z = 1 for hydrogen, <pr> = -ih/a0. 
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The expectation value of pr

2 is given by 
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


∂
∂+

∂
∂=

∫ ∫∫

∫
∞

−

a
Z

a
Za

Z

a
Za

Z
a
Z

dddrer
a
Z

ra
Z

a
Z

dV
rrr

p

aZr

r

h

h

h

h

π
π

φθθ
π

ψψ

ππ

 

  

Thus 0
2

0

2

0

22 =





−





=−=

a
Z

a
Zpp rrp hσ . 
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6. If electrons were spinning balls, they would have moment of inertia I = 2/5MR2 and spin 
angular momentum S = Iω. The maximum speed at which the outside edge of a real ball 
electron could be spinning is the speed of light. Since we know hh

r
4
3)1( =+= ssS , 

what value of R does this imply? Note that experiment has shown that electrons act like 
point particles down to distances below 10-15 m.  

 

 The speed of the outside edge is v = Rω. Thus we have h4
32

5
2 =

R
cMR . Solving for R 

we find nm
eV

nmeV
Mc

cR 13
62 1036.8

105109989.0
33.197

2
5

4
3

2
5

4
3 −×=

×
⋅== h . Note that this 

implies that the intrinsic quantum mechanical angular momentum called “spin” has no 
relation to the spin angular momentum of classical mechanics. 

 
  
 
 
7. The deuteron is a hydrogen atom with an extra neutron in the core. The effects the 

reduced mass µ in our equation for En. If mp = 1836 me and mn = 1839 me, find the 
wavelengths of light necessary to ionize a hydrogen atom and a deuteron. What is the 
difference in these two wavelengths? 

 
 The equation for the energy levels of either version of hydrogen is given by 

22

22 





=

h

kZe
n

En
µ  where Z =1, 

N

e

e

m
m
m

+
=

1
µ , and mN is the mass of the nucleus. When 

we deal just with hydrogen mN = mp and 2
6.13
n

eVE H
n = . For the deuteron, mN = mp + mn, 

2

22

2

22

2
6.13

1

1

22 n
eV

m
m

mm
m

kZe
n

kZe
n

E

p

e

np

e

D

DDD
n

+

+
+

=





=





=

hh

µ
µ
µµ . Using the given values 

for the masses, we find 2
6.13999728.0
n

eVE D
n = . To ionize each atom we need E1. The 

wavelength in each case is eVnmeV
E
hc

HH 162.91
6.13

8.1239

1

=⋅==λ , 

eV
eV

nmeV
E
hc

DD 187.91
)6.13)(999728.0(

8.1239

1

=⋅==λ , and the difference is only 0.025 nm. 
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8. We can define the effective charge that an electron sees by the formula 

2
02

n

E
ZE effn = where E0 = 13.6 eV. The electron configuration of sodium is 1s22s22p63s. If 

the inner electrons fully shielded the valence electron from the core, what would Zeff be? 
How much energy would be needed to remove the valence electron from sodium in this 
case? The actual ionization energy of sodium is 5.1 eV. What is the true Zeff? 

 
 From the electron configuration we see that the sodium valence electron has n = 3. If the 

valence electron was fully shielded then, E3 = 12 (13.6 eV)/32 = 1.51 eV. This is the 
amount of energy needed to remove the electron from the n = 3 level. Knowing the 
correct value we see  

 

84.1
51.1
1.52

0 ===
n

eff E
nEZ . 

 
9. Potassium has an electron configuration 1s22s22p63s23p64s and an ionization energy of 

4.3 eV. What is the true Zeff? See previous question. 
 
 From the electron configuration we see that the potassium valence electron has n = 4. If 

Using the previous formula  
 

25.2
6.13

)16)(3.4(2
0 ===

n
eff E

nEZ . 

 
 
10.  Write the electron configurations for the following, use only Fig. 7-19 of the text which 

shows the relative energies of the atomic shells and subshells. 
 a) Rubidium, Z = 37. 
 b) Iodine, Z = 53. 
 
 We have to fill the orbitals shown in Fig. 7-19 starting at the lowest level and stopping 

when we run out of electrons. The order of filling and number of allowed electrons is 1s 
(2e), 2s (2e), 2p (6e), 3s (2e), 3p (6e), 4s (2e), 3d (10e), 4p (6e), 5s (2e), 4d (10e), 5p 
(6e), 6s (2e), 4f (e), 5d (14e), 6p (6e) … 

 
 Hence 
 
 a) Rubidium - 1s22s22p63s23p64s23d104p65s1 

 
 b) Iodine - 1s22s22p63s23p64s23d104p65s24d105p5 
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