INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

Today's Objectives:

Students will be able to:

1. Find the kinematic quantities (position, displacement, velocity, and acceleration) of a particle traveling along a straight path.

Rectilinear means position given in Cartesian (x, y, and z) coordinates.

We will stat with motion in a straight line.

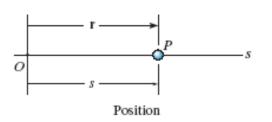
An Overview of Mechanics

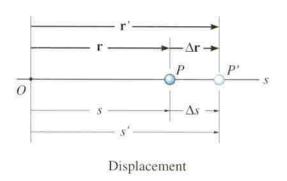
Mechanics: The study of how bodies react to forces acting on them.

Statics: The study of bodies in equilibrium.

Dynamics:

- 1. **Kinematics** concerned with the geometric aspects of motion
- 2. **Kinetics** concerned with the forces causing the motion





A particle travels along a straight-line path defined by the coordinate axis s.

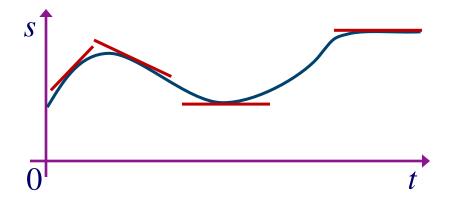
The position of the particle at any instant, relative to the origin, O, is defined by the position vector \mathbf{r} , or the scalar s. Scalar s can be positive or negative. Typical units for \mathbf{r} and s are meters (m) or feet (ft).

The displacement of the particle is defined as its change in position.

Vector form: $\Delta r = r' - r$ Scalar form: $\Delta s = s' - s$

The total distance traveled by the particle, s_T , is a positive scalar that represents the total length of the path over which the particle travels.

The easiest way to study the motion of a particle is to graph position versus time.

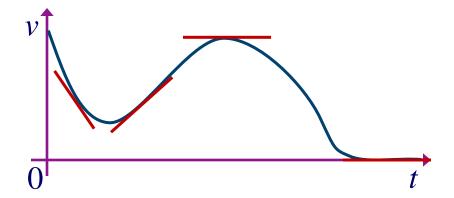


We can define velocity v as the slope of a line tangent to s-t curve.

$$v = \frac{ds}{dt}$$

Positive slope \rightarrow v > 0 \rightarrow particle moving in positive direction. Negative slope \rightarrow v < 0 \rightarrow particle moving in negative direction. Zero slope \rightarrow v = 0 \rightarrow particle turning around OR stopped.

The easiest way to study the velocity of a particle is to graph velocity versus time.

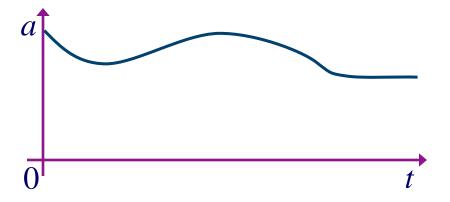


We now define acceleration a as the slope of tangent to v-t curve.

$$a = \frac{dv}{dt}$$

If a and v are both the same sign, object is speeding up. If a and v are opposite sign, object is slowing.

We can study the acceleration of a particle by a graph as well.



But we usually don't need to look at further derivatives.

Given the functional dependence of s(t) or v(t) we can use the methods of Calculus I to find derivatives.

Example

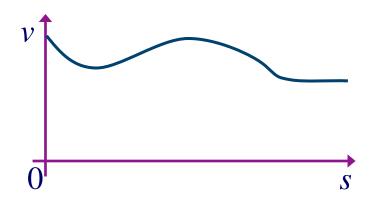
Given $s(t) = 7t^3 + 5t + 2$, find v(t) and a(t).

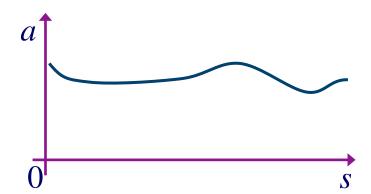
$$v(t) = \frac{ds}{dt} = 21t^2 + 5.$$

And

$$a(t) = \frac{dv}{dt} = 42t.$$

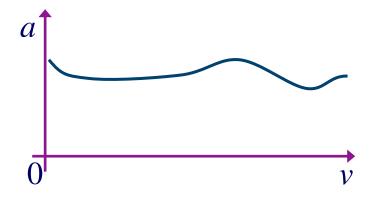
We are so used to studying position, velocity, and acceleration versus time curves that we forget that we can also study how velocity and acceleration depend on *position*!





NOTE!
$$a(s) \neq \frac{dv}{ds}$$

We can also study how acceleration depend on velocity!



We have six motion functions:

$$v(t)$$
 $v(s)$

$$a(t)$$
 $a(s)$ $a(v)$

We have two relational definitions:

$$v = \frac{ds}{dt}$$
 and $a = \frac{dv}{dt}$

Goal. Given one motion function, find the others!

We know the operational meaning of our definitions, $v = \frac{ds}{dt}$ and $a = \frac{dv}{dt}$, that is how to differentiate s(t) and v(t).

We often fail to recognize that our definitions, $v = \frac{ds}{dt}$ and $a = \frac{dv}{dt}$, can be treated like ordinary equations involving fractions that can be manipulated as we choose.

So for instance $v = \frac{ds}{dt}$ can be rearranged as $dt = \frac{ds}{v}$.

And this result $dt = \frac{ds}{v}$ can be substituted into $a = \frac{dv}{dt}$ to yield a new relationship $a = \frac{dv}{ds/v} = v \frac{dv}{ds}$ which tells us how to get a(s) and v(s).

Example

Given v(s) = 5s + 2, find a(s).

$$a(s) = v \frac{dv}{ds} = (5s + 2) 5 = 25s + 10.$$

We have six motion functions:

$$v(t)$$
 $v(s)$

$$a(t)$$
 $a(s)$ $a(v)$

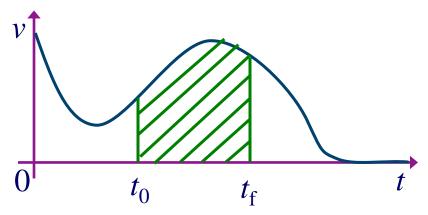
We have **three** relational definitions:

$$v = \frac{ds}{dt}$$
, $a = \frac{dv}{dt}$, and $a = v \frac{dv}{ds}$

We use differential calculus to move down the list of functions.

What if we want to move up the list?

We integrate!



Displacement $\Delta s = \int_{t_0}^{t_f} v \, dt$ Area under the curve

Since $\Delta s = s_f - s_0$, if we know the initial condition s_0 at t_0 , we have s_f .

Usually v_f , s_f , and t_f are just written as v, s, and t if there is no chance of confusion.

Method of Separation of Variables

Suppose we are asked to find v(s = 5 m) given a(s) = 5s + 2 and the initial condition that $v_0 = 4 \text{ m/s}$ at $s_0 = 0$.

- Step 1. Find the differential relationship that has v, a, and s. Here it is $a = v \frac{dv}{ds}$
- Step 2. Rearrange the differential relationship so variables of the same type are on the same side of the equals a(s) ds = vdv
- Step 3. Since both sides are equal, the integrals of the sides must also equal

$$\int_{s_0=0}^{s} a(s) \, ds = \int_{v_0=4}^{v} v \, dv$$

Note: even though we know s = 5 m we first get v as a general function of s..

Method of Separation of Variables

$$\int_0^s (5s + 2) \, ds = \int_4^v v \, dv$$

$$\frac{5}{2}s^2 + 2s \mid_0^s = \frac{1}{2}v^2 \mid_4^v$$

$$\frac{5}{2}s^2 + 2s = \frac{1}{2}v^2 - 8$$

$$v^2 = 5s^2 + 4s + 8$$

$$v = \pm \sqrt{5s^2 + 4s + 8}$$

When s = 5, $v = \pm \sqrt{153}$. Note two possible solutions!

Since a > 0 for all s, and $v_0 > 0$, the solution is $v = +\sqrt{153}$

SUMMARY OF KINEMATIC RELATIONS: RECTILINEAR MOTION

Differentiate position to get velocity and acceleration.

$$v = ds/dt$$
; $a = dv/dt$ or $a = v dv/ds$

• Integrate acceleration for velocity and position.

$$\int_{v_0}^{v} dv = \int_{0}^{t} a \, dt \text{ or } \int_{v_0}^{v} v \, dv = \int_{s_0}^{s} a \, ds \qquad \int_{s_0}^{s} ds = \int_{0}^{t} v \, dt$$

Position:

$$\int_{s_o}^s ds = \int_o^t v \, dt$$

• Note that s_o and v_o represent the initial position and velocity of the particle at t = 0.

CONSTANT ACCELERATION

The three kinematic equations can be integrated for the special case when acceleration is constant ($a = a_c$) to obtain very useful equations. A common example of constant acceleration is gravity; i.e., a body freely falling toward earth. In this case, $a_c = g = 9.81 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$ downward. These equations are:

$$\int_{v_o}^{v} dv = \int_{o}^{t} a_c dt \quad \text{yields} \quad v = v_o + a_c t$$

$$\int_{s_o}^{s} ds = \int_{o}^{t} v dt \quad \text{yields} \quad s = s_o + v_o t + (1/2)a_c t^2$$

$$\int_{s_o}^{v} v dv = \int_{o}^{s} a_c ds \quad \text{yields} \quad v^2 = (v_o)^2 + 2a_c (s - s_o)$$

EXAMPLE

Given: A motorcyclist travels along a straight road at a speed of 27 m/s. When the brakes are applied, the motorcycle decelerates at a rate of -6t m/s².

Find: The distance the motorcycle travels before it stops.

Plan: Establish the positive coordinate s in the direction the motorcycle is traveling. Since the acceleration is given as a function of time, integrate it once to calculate the velocity and again to calculate the position.

EXAMPLE

Solution:

(continued)

1) Integrate acceleration to determine the velocity.

$$a = dv / dt = dv = a dt = \int_{v_0}^{v} dv = \int_{0}^{t} (-6t) dt$$

$$=> v - v_o = -3t^2 => v = -3t^2 + v_o$$

2) We can now determine the amount of time required for the motorcycle to stop (v = 0). Use $v_o = 27$ m/s.

$$0 = -3t^2 + 27 \implies t = 3 \text{ s}$$

3) Now calculate the distance traveled in 3s by integrating the velocity using $s_0 = 0$:

v = ds / dt => ds = v dt =>
$$\int_{s_0}^{s} ds = \int_{0}^{t} (-3t^2 + v_0) dt$$

=> s - s₀ = -t³ + v₀t
=> s - 0 = (3)³ + (27)(3) => s = 54 m

EXAMPLE

Given: The acceleration of a body is a = 5v. At t = 0, s = 0, and $v_0 = 2$ m/s. (a) Find v(t). (b) Find v(s).

(a) Need the equation with a, v, and t.

$$a = \frac{dv}{dt}$$

Rearrange. Terms with *t* on one side and *v* on the other.

$$dt = \frac{dv}{a}$$

Create integrals

$$\int_0^t dt = \int_2^v \frac{dv}{5v}$$

EXAMPLE (continued)

Result is

$$t \Big|_0^t = \frac{1}{5} \ln(v) \Big|_2^v$$
$$t = \frac{1}{5} \ln(\frac{v}{2})$$
$$v = 2e^{5t}$$

(b) Need the equation with a, v, and s.

$$a = v \frac{dv}{ds}$$
$$ds = v \frac{dv}{ds}$$

EXAMPLE (continued)

Result is

$$\int_0^s ds = \int_2^v v \frac{dv}{5v}$$

$$s \Big|_0^s = \frac{1}{5}v \Big|_2^v$$

$$s = \frac{1}{5}(v-2)$$

$$v = 5s + 2$$

CONCEPT QUIZ

- 1. A particle moves along a horizontal path with its velocity varying with time as shown. The average acceleration of the particle is ______.
 - A) $0.4 \text{ m/s}^2 \longrightarrow$

B) $0.4 \text{ m/s}^2 \leftarrow$

C) $1.6 \text{ m/s}^2 \longrightarrow$

- D) 1.6 m/s² \leftarrow
- 2. A particle has an initial velocity of 30 ft/s to the left. If it then passes through the same location 5 seconds later with a velocity of 50 ft/s to the right, the average velocity of the particle during the 5 s time interval is _____.
 - A) $10 \text{ ft/s} \longrightarrow$

B) $40 \text{ ft/s} \longrightarrow$

C) $16 \text{ m/s} \rightarrow$

D) 0 ft/s

ATTENTION QUIZ

1. A particle has an initial velocity of 3 ft/s to the left at $s_0 = 0$ ft. Determine its position when t = 3 s if the acceleration is 2 ft/s² to the right.

- A) 0.0 ft
- C) $18.0 \text{ ft} \rightarrow$

- B) 6.0 ft ←
- D) $9.0 \text{ ft} \rightarrow$

2. A particle is moving with an initial velocity of v = 12 ft/s and constant acceleration of 3.78 ft/s² in the same direction as the velocity. Determine the distance the particle has traveled when the velocity reaches 30 ft/s.

- A) 50 ft
- C) 150 ft

- B) 100 ft
- D) 200 ft

