

Can we find ρ in terms of knowns m_0 , m_1 , x_0 and y_0 ?

Since we have the slope of each line and a point they pass through, we can get the equation of each $y = mx + b$.

Line 0: slope $m = -1/m_0$, and to find b use from point $y_0 = -(1/m_0)x_0 + b$

$$
\therefore y = -(1/m_0)x + (y_0 + (1/m_0)x_0)
$$

or
$$
y-y_0 = -(1/m_0)(x-x_0)
$$
 [Eqn A]

Line 1: slope $m = -1/m_1$, and to find b use from point $y_1 = -(1/m_1)x_1 + b$

$$
\therefore y = -(1/m_1)x + (y_1 + (1/m_1)x_1)
$$

or
$$
y-y_1 = -(1/m_1)(x-x_1)
$$

When $x = X_c$ in each equation, $y = Y_c$. So

$$
-(1/m_0)X_c + (y_0 + (1/m_0)x_0) = -(1/m_1)X_c + (y_1 + (1/m_1)x_1)
$$

Collecting X_C terms

$$
[(1/m_1) - (1/m_0)]X_c = y_1 - y_0 + (1/m_1)x_1 - (1/m_0)x_0
$$

Rearranging into a more useful form for later:

$$
[(1/m_1) - (1/m_0)](X_c - x_0) = y_1 - y_0 + (1/m_1)x_1 - (1/m_0)x_0 - [(1/m_1) - (1/m_0)]x_0
$$

Or

$$
[(1/m_1) - (1/m_0)](X_c - x_0) = y_1 - y_0 + (1/m_1)(x_1 - x_0)
$$
 [Eqn B]

Now that we have found an Equation for X_c we can determine ρ using Pythagorean theorem

$$
(X_{C} - x_{0})^{2} + (Y_{C} - y_{0})^{2} = \rho^{2} \cdot \frac{x_{C}^{2}y_{C}}{\rho}
$$

From Eqn A, $Y_{C} - y_{0} = -(1/m_{0})(X_{C} - x_{0})$
$$
(1 + 1/m_{0}^{2})(X_{C} - x_{0})^{2} = \rho^{2} \cdot \frac{x_{C}^{2}y_{C}^{2}}{\rho^{2}}
$$

We can rewrite Eqn B

 $(X_c - x_0) = {y_1 - y_0 + (1/m_1)(x_1 - x_0)}^*$ m₁m₀/(m₁-m₀) $(1 + 1/m_0^2)$ { $y_1 - y_0 + (1/m_1)(x_1 - x_0)$ }² [$m_1m_0 / (m_1 - m_0)$]² $=$ Ω^2

Find radius of curve at $x = x_0$ where $y = f(x)$ is given. y

Hold on! We do have x_0 , $y_0 = f(x_0)$, and $m_0 = f'(x_0)$, but we don't have x_1 , $y_1 = f(x_1)$, and $m_1 = f'(x_1)$. And this is certainly not a circular arc!

Well if we consider a point dx to the right, the portion of the curve from x_0 to x_0 + dx is a very good approximation of a circular arc.

Thus $x_1 = x_0 + dx$, $y_1 = f(x_0 + dx)$ and $m_1 = f'(x_0 + dx)$.

Furthermore, using a Taylor expansion

$$
y_1 = f(x_0 + dx) = f(x_0) + dx f'(x_0) = y_0 + m_0 dx
$$
, and

$$
m_1 = f'(x_0 + dx) = f'(x_0) + dx f''(x_0) = m_0 + dx f''(x_0)
$$

Since we know f(x), we do know how to get first and second derivatives.

- $(1 + 1/m₀²) (y₁ y₀ + (1/m₁)(x₁ x₀))² [m₁m₀ / (m₁$ m_0]² = ρ^2
- $(1 + 1/m_0^2){m_0dx + dx/(m_0 + dx f''(x_0))}^2$ *[(m₀ + dx f''(x₀)) m₀]² / [dx f''(x₀)]² = ρ ²

Since dx is vanishingly small, can expand

- $(m_0^2 + 1)/m_0^2$ { $m_0 dx + (dx/m_0)(1 + dx f''(x_0) / m_0)$ }² *[(1 + dx f''(x₀)/m₀) m₀²]² / [dx f''(x₀)]² = ρ ²
- $(m_0^2 + 1)/m_0^2 (m_0 dx)^2$ { 1+ 1/m₀² (1 + dx f''(x₀)/m₀)}² *[(1 + dx f''(x₀)/m₀)]² m₀⁴/ [dx f''(x₀)]² = ρ ²

 $(m_0^2 + 1) \{ 1 + 1/m_0^2 (1 + dx f''(x_0) / m_0) \}^2$ *[(1 + dx f''(x₀)/m₀)]² m₀⁴/ [f''(x₀)]² = ρ ²

Letting dx vanish we have:

 $(m_0^2 + 1)$ { 1+ 1/m₀² }² m₀⁴ / [f''(x₀)]² = ρ^2 $(m_0^2 + 1)^3 / [f''(x_0)]^2 = \rho^2$

 $([f'(x_0)]^2 + 1)^3 / [f''(x_0)]^2 = \rho^2$