MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS

Today's Objectives:

Students will be able to:

- a) understand and define moment, and,
- b) determine moments of a force in 2-D and 3-D cases.

APPLICATIONS

What is the net effect of the two forces on the wheel?

APPLICATIONS

(continued)

What is the effect of the 30 N force on the lug nut?

MOMENT OF A FORCE - SCALAR FORMULATION (Section 4.1)

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

MOMENT OF A FORCE - SCALAR FORMULATION (continued)

In the 2-D case, the <u>magnitude</u> of the moment is $M_0 = F d$

As shown, d is the <u>perpendicular</u> distance from point O to the <u>line of action</u> of the force.

In 2-D, the <u>direction</u> of M_O is either clockwise or counter-clockwise depending on the tendency for rotation.

MOMENT OF A FORCE - SCALAR FORMULATION

(continued)

For example, $M_O = F d$ and the direction is counter-clockwise.

Often it is easier to determine M_O by using the components of F as shown. $F_{v} \leftarrow F$

b C F_x

Using this approach, $M_O = (F_Y a) - (F_X b)$. Note the different signs on the terms! The typical sign convention for a moment in 2-D is that counter-clockwise is considered positive. We can determine the direction of rotation by imagining the body pinned at O and deciding which way the body would rotate because of the force.

EXAMPLE #1

Given: A 400 N force is applied to the frame and $\theta = 20^{\circ}$.

Find: The moment of the force at A.

Plan:

- 1) Resolve the force along x and y axes.
- 2) Determine M_A using scalar analysis.

EXAMPLE #1 (continued)

Solution

+
$$\uparrow$$
 F_y = -400 cos 20° N
+ \rightarrow F_x = -400 sin 20° N
+ M_A = {(400 cos 20°)(2) + (400 sin 20°)(3)} N·m
= 1160 N·m

MOMENT OF A FORCE – VECTOR FORMULATION (Section 4.3)

Moments in 3-D can be calculated using scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product, $M_0 = r \times F$.

Here r is the position vector from point O to any point on the line of action of F. Need to review cross-product.

CROSS PRODUCT (Section 4.2)

In general, the cross product of two vectors \mathbf{A} and \mathbf{B} results in another vector \mathbf{C} , i.e., $\mathbf{C} = \mathbf{A} \times \mathbf{B}$. The magnitude and direction of the resulting vector can be written as

$$C = A \times B = A B \sin \theta u_C$$

Here u_C is the unit vector perpendicular to both A and B vectors as shown (or to the plane containing the A and B vectors).

Note: $\vec{C} \perp \vec{A} \& \vec{C} \perp B$

CROSS PRODUCT

(continued)

The right hand rule is a useful tool for determining the direction of the vector resulting from a cross product.

For example: $i \times j = k$

Note that a vector crossed into itself is zero, e.g., $\mathbf{i} \times \mathbf{i} = \mathbf{0}$

CROSS PRODUCT

(continued)

You can evaluate the cross product of two vectors if you have them in Cartesian form.

$$\vec{C} = \vec{A} \times \vec{B}
= (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})
= A_x B_x \hat{i} \times \hat{i} + A_x B_y \hat{i} \times \hat{j} + A_x B_z \hat{i} \times \hat{k} + A_y B_x \hat{j} \times \hat{i} + A_y B_y \hat{j} \times \hat{j} + A_y B_z \hat{j} \times \hat{k} + A_z B_x \hat{k} \times \hat{i} + A_z B_y \hat{k} \times \hat{j} + A_z B_z \hat{k} \times \hat{k}$$

But there is a simpler way to evaluate this.

CROSS PRODUCT

(continued)

Of even more utility, the cross product can be written as

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Each component can be determined using 2×2 determinants.

MOMENT OF A FORCE – VECTOR FORMULATION (Section 4.3)

Moments in 3-D can be calculated using scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product, $M_0 = r \times F$.

Here r is the position vector from point O to any point on the line of action of F.

MOMENT OF A FORCE – VECTOR FORMULATION

(continued)

So, using the cross product, a moment can be expressed as:

Always write this!

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

By expanding the above equation using 2×2 determinants (see Section 4.2), we get (sample units are N - m or lb - ft)

$$\boldsymbol{M_0} = (\mathbf{r_y} \ \mathbf{F_Z} - \mathbf{r_z} \ \mathbf{F_y}) \ \boldsymbol{i} - (\mathbf{r_x} \ \mathbf{F_z} - \mathbf{r_z} \ \mathbf{F_x}) \ \boldsymbol{j} + (\mathbf{r_x} \ \mathbf{F_y} - \mathbf{r_y} \ \mathbf{F_x}) \boldsymbol{k}$$

The physical meaning of the above equation becomes evident by considering the force components separately and using a 2-D formulation.

EXAMPLE # 2

Given: a = 3 in, b = 6 in and c = 2 in.

Find: Moment of **F** about point O.

Plan:

- 1) Find r_{OA} .
- 2) Determine $M_0 = r_{0A} \times F$.

Solution
$$r_{OA} = \{3 i + 6 j - 0 k\}$$
 in
$$\mathbf{M}_{O} = \begin{vmatrix} i & j & k \\ 3 & 6 & 0 \\ 3 & 2 & -1 \end{vmatrix} = [\{6(-1) - 0(2)\} i - \{3(-1) - 0(3)\} j + \{3(2) - 6(3)\} k] \text{ lb·in}$$

$$= \{-6 i + 3 j - 12 k\} \text{ lb·in}$$

CONCEPT QUIZ

1. If a force of magnitude F can be applied in four different 2-D configurations (P,Q,R, & S), select the cases resulting in the maximum and minimum torque values on the nut. (Max, Min).

2. If $M = r \times F$, then what will be the value of $M \cdot r$?

A) 0

B) 1

C) $r^2 F$

D) None of the above.

GROUP PROBLEM SOLVING

Given: A 40 N force is applied to the wrench.

Find: The moment of the force at O.

Plan: 1) Resolve the force along x and y axes.

2) Determine M_O using scalar analysis.

Solution:
$$+ \uparrow F_y = -40 \cos 20^{\circ} \text{ N}$$

 $+ \rightarrow F_x = -40 \sin 20^{\circ} \text{ N}$
 $+ M_O = \{-(40 \cos 20^{\circ})(200) + (40 \sin 20^{\circ})(30)\} \text{N} \cdot \text{mm}$
 $= -7107 \text{ N} \cdot \text{mm} = -7.11 \text{ N} \cdot \text{m}$

GROUP PROBLEM SOLVING

Given: a = 3 in , b = 6 in and c = 2 in

Find: Moment of F about point P

Plan: 1) Find r_{PA} .

2) Determine $M_P = r_{PA} \times F$

Solution: $r_{PA} = \{ 3 i + 6 j - 2 k \}$ in

$$M_P = \begin{bmatrix} i & j & k \\ 3 & 6 & -2 \\ 3 & 2 & -1 \end{bmatrix} = \{ -2 i - 3 j - 12 k \} \text{ lb} \cdot \text{in}$$

ATTENTION QUIZ

- 1. Using the CCW direction as positive, the net moment of the two forces about point P is
 - A) 10 N·m B) 20 N·m C) 20 N·m

- D) 40 N·m E) 40 N·m
- 2. If $r = \{5j\}$ m and $F = \{10k\}$ N, the moment

 $r \times F$ equals $\{$ _____ $\}$ N·m.

- A) 50i B) 50j C) -50i
- D) -50j E) 0

