MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS

Today's Objectives :

Students will be able to:

- a) understand and define moment, and,
- b) determine moments of a force in 2-D and 3-D cases.

APPLICATIONS

What is the net effect of the two forces on the wheel?

APPLICATIONS (continued)

What is the effect of the 30 N force on the lug nut?

MOMENT OF A FORCE - SCALAR FORMULATION (Section 4.1)

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

MOMENT OF A FORCE - SCALAR FORMULATION (continued)

In the 2-D case, the <u>magnitude</u> of the moment is $M_0 = F d$

As shown, d is the **perpendicular** distance from point O to the line of action of the force.

In 2-D, the <u>direction</u> of M_O is either clockwise or counter-clockwise depending on the tendency for rotation.

MOMENT OF A FORCE - SCALAR FORMULATION (continued)

For example, $M_{\Omega} = F d$ and the direction is counter-clockwise.

Often it is easier to determine M_0 by using the components of \bm{F} as shown. F_{y} \rightarrow F

 $\mathbf x$

$$
b \begin{array}{|c|c|} \hline a & & & F \\ \hline 0 & & & & \end{array}
$$

Using this approach, $M_0 = (F_Y a) - (F_X b)$. Note the different signs on the terms! The typical sign convention for a moment in 2-D is that counter-clockwise is considered positive. We can determine the direction of rotation by imagining the body pinned at O and deciding which way the body would rotate becaus[e of](#page-4-0) the force.

EXAMPLE #1

Given: A 400 N force is applied to the frame and $\theta = 20^{\circ}$.

Find: The moment of the force at A.

Plan:

- 1) Resolve the force along x and y axes.
- 2) Determine M_A using scalar analysis.

EXAMPLE #1 (continued)

Solution

+
$$
\uparrow F_y
$$
 = -400 cos 20° N
+ $\rightarrow F_x$ = -400 sin 20° N
+ M_A = {(400 cos 20°)(2) + (400 sin 20°)(3)} N·m
= 1160 N·m

MOMENT OF A FORCE – VECTOR FORMULATION (Section 4.3)

Moments in 3-D can be calculated using scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product, $M_0 = r \times F$.

Here \boldsymbol{r} is the position vector from point O to any point on the line of action of *F*. Need to review cross-product.

In general, the cross product of two vectors *A* and *B* results in another vector \bf{C} , i.e., $\bf{C} = \bf{A} \times \bf{B}$. The magnitude and direction of the resulting vector can be written as

 $C = A \times B = AB \sin \theta u_C$

Here u_C is the unit vector perpendicular to both A and B vectors as shown (or to the plane containing the A and B vectors).

Note: $\vec{C} \perp \vec{A} \; \& \; \vec{C} \perp B$

CROSS PRODUCT (continued)

The right hand rule is a useful tool for determining the direction of the vector resulting from a cross product.

For example: $i \times j = k$

Note that a vector crossed into itself is zero, e.g., $\boldsymbol{i} \times \boldsymbol{i} = \boldsymbol{0}$

CROSS PRODUCT (continued)

You can evaluate the cross product of two vectors if you have them in Cartesian form.

$$
\vec{C} = \vec{A} \times \vec{B}
$$

= $(A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$
= $A_x B_x \hat{i} \times \hat{i} + A_x B_y \hat{i} \times \hat{j} + A_x B_z \hat{i} \times \hat{k} + A_y B_x \hat{j} \times \hat{i} + A_y B_y \hat{j} \times \hat{j} + A_y B_z \hat{j} \times \hat{k} + A_z B_x \hat{k} \times \hat{i} + A_z B_y \hat{k} \times \hat{j} + A_z B_z \hat{k} \times \hat{k}$

But there is a simpler way to evaluate this.

CROSS PRODUCT (continued)

Of even more utility, the cross product can be written as

$$
\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}
$$

Each component can be determined using 2×2 determinants.

MOMENT OF A FORCE – VECTOR FORMULATION (Section 4.3)

Moments in 3-D can be calculated using scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product, $M_0 = r \times F$.

Here \boldsymbol{r} is the position vector from point O to any point on the line of action of *F*.

MOMENT OF A FORCE – VECTOR FORMULATION (continued)

So, using the cross product, a moment can be expressed as:

Always write this!

$$
\mathbf{M}_O = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}
$$

By expanding the above equation using 2×2 determinants (see Section 4.2), we get (sample units are N - m or lb - ft)

$$
\mathbf{M_o} = (\mathbf{r}_y \ \mathbf{F}_z - \mathbf{r}_z \ \mathbf{F}_y) \ \mathbf{i} - (\mathbf{r}_x \mathbf{F}_z - \mathbf{r}_z \mathbf{F}_x) \ \mathbf{j} + (\mathbf{r}_x \mathbf{F}_y - \mathbf{r}_y \mathbf{F}_x) \mathbf{k}
$$

The physical meaning of the above equation becomes evident by considering the force components separately and using a 2-D formulation.

EXAMPLE # 2

Given: $a = 3$ in, $b = 6$ in and $c = 2$ in. **Find:** Moment of *F* about point O. **Plan:** 1) Find r_{OA} . 2) Determine $M_{O} = r_{OA} \times F$.

Solution
$$
r_{OA} = \{3i + 6j - 0k\} \text{ in}
$$

\n
$$
\mathbf{M}_0 = \begin{vmatrix} i & j & k \\ 3 & 6 & 0 \\ 3 & 2 & -1 \end{vmatrix} = [\{6(-1) - 0(2)\} i - \{3(-1) - 0(3)\} j + \{3(2) - 6(3)\} k] \text{ lb-in}
$$
\n
$$
= \{-6i + 3j - 12k\} \text{ lb-in}
$$

CONCEPT QUIZ

1. If a force of magnitude F can be applied in four different 2-D configurations (P,Q,R, $\&$ S), select the cases resulting in the maximum and minimum torque values on the nut. (Max, Min).

A) (Q, P) B) (R, S) (C) (P, R) $D)$ (Q, S)

2. If $M = r \times F$, then what will be the value of $M \cdot r$?

- A) 0 B) 1
- C) $r^2 F$ D) None of the above.

GROUP PROBLEM SOLVING

- **Given:** A 40 N force is applied to the wrench.
- **Find:** The moment of the force at O.
- **Plan:** 1) Resolve the force along x and y axes.
	- 2) Determine M_O using scalar analysis.

Solution: $+ \uparrow F_v = -40 \cos 20^\circ$ N $+$ \rightarrow \dot{F}_x = - 40 sin 20° N \int + M_o = {-(40 cos 20°)(200) + (40 sin 20°)(30)}N·mm $= -7107$ N·mm $= -7.11$ N·m

GROUP PROBLEM SOLVING

Given: $a = 3$ in, $b = 6$ in and $c = 2$ in Find: Moment of F about point P **Plan**: 1) Find r_{p_A} . 2) Determine $M_P = r_{PA} \times F$

Solution: $r_{pA} = \{ 3i + 6j - 2k \}$ in

$$
M_P = \begin{vmatrix} i & j & k \\ 3 & 6 & -2 \\ 3 & 2 & -1 \end{vmatrix} = \{-2i - 3j - 12k\} \text{ lb} \cdot \text{in}
$$

.

ATTENTION QUIZ

1. Using the CCW direction as positive, the net moment of the two forces about point P is

- A) 10 N ·m B) 20 N ·m C) 20 N ·m
- D) $40 N \cdot m$ E) $-40 N \cdot m$
- 2. If $\mathbf{r} = \{5j\}$ m and $\mathbf{F} = \{10k\}$ N, the moment
	- *r x F* equals { _______ } N·m.
	- A) $50 i$ B) $50 j$ C) $-50 i$

D) – 50 j E) 0

