Newton's Laws

- 1. An object travels in a straight line unless acted upon by a net external force.
- 2. $\sum \vec{F} = m\vec{a}$
- 3. When two objects interact, each exerts an equal but opposite force on the other.

Need to know types of forces; weight, normal, tension, spring, and friction

An object travels in a straight line unless acted upon by a net external force.

• Constant velocity motion is natural.

• Inertia

• Only changes in velocity need to be explained

- External forces make objects accelerate
- Forces are vectors
- Forces originate from one body acting on another
- If you cannot identify the body that exerts the force, the force probably does not exist

When two objects interact, each exerts an equal but opposite force on the other.

• Hardest law to understand (Hollywood seldom feels that it is true)

 Our sense of how much we weigh and how strongly we push or pull actually comes from the reaction

Fundamental Forces

- Gravitation
 - acts between objects with mass
 - long range
- Electromagnetism
 - acts between objects with charge
 - long range
- Strong Interaction
 - acts between objects with color charge, .e.g. quarks
 - short range (nucleus sized)
 - holds nucleus together
- Weak Interaction
 - acts between all particles
 - short range
 - beta decay

Forces at a Human Scale

- Gravitation ⇒ Weight W = mg
- Mostly only aware of EM when we see static cling or use fridge magnets
- Even though most objects are electrically neutral, EM interactions between millions of atoms of objects in contact leads to most of the forces we are familiar with

Common Contact Forces

- normal
- friction ($f_s^{max} = \mu_s n, f_k = \mu_k n$)
- air resistance
- buoyancy
- tension
- elastic or spring force (F = kx)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Free Body Diagram

• Shows you know which forces are acting

 typically you can guess the type of force acting and its direction but not its magnitude

- Shows you understand change in velocity
 - typically can guess the direction but not magnitude
- Necessary to explain equations you will use

Example: Forces In Equilibrium

Stationary, a = 0

 Upward force components must balance downward force components

 $F_1 + F_2 = F_4$

 Right force components must balance left force components A block of mass M is sliding up a frictionless incline and is slowing down.

A sign of mass M is hanging by two strings from the ceiling. It is not moving.

θ Φ

A ball of mass M has been dropped over a cliff. Ignore air resistance.