Sound

Copyright © 2006 Pearson Education, Inc.

TABLE 16–1 Speed of Sound in Various Materials (20°C and 1 atm)

Material	Speed (m/s)	
Air	343	
Air $(0^{\circ}C)$	331	
Helium	1005	
Hydrogen	1300	
Water	1440	
Sea water	1560	
Iron and steel	\approx 5000	
Glass	≈ 4500	
Aluminum	\approx 5100	
Hardwood	≈ 4000	
Concrete	\approx 3000	

Copyright @ 2008 Pearson Education, Inc.

Waves in 2D and 3D

Wave fronts are the crests of the wave. They are spaced one wavelength apart.

Questions

Sound Intensity

Intensity $I = Power/Area (W/m^2)$

Spherical sound source:

 $A = 4\pi R^2$, $I = P / 4\pi R^2$

If $I = I_1$ at position 1, $I_2 = I_1 / 2^2 = I_1 / 4$ since it is twice as far from source

TABLE 16–2 Intensity of Various Sounds

Source of the Sound	Sound Level (dB)	Intensity (W/m ²)
Jet plane at 30 m	140	100
Threshold of pain	120	1
Loud rock concert	120	1
Siren at 30 m	100	1×10^{-2}
Truck traffic	90	1×10^{-3}
Busy street traffic	80	1×10^{-4}
Noisy restaurant	70	1×10^{-5}
Talk, at 50 cm	65	3×10^{-6}
Quiet radio	40	1×10^{-8}
Whisper	30	1×10^{-9}
Rustle of leaves	10	1×10^{-11}
Threshold of hearing	ng O	1×10^{-12}

Copyright © 2008 Pearson Education, Inc.

Sound Level

Describes perception of intensity $\beta = 10 \log \frac{I}{I_0}, \quad I = I_0 \times 10^{\beta/10}$ For multifrequency sound, intensity adds $I_{\text{net}} = I_1 + I_2 + \dots$

Note!
$$\beta_{\text{net}} \neq \beta_1 + \beta_2 + \dots$$

Copyright @ 2008 Pearson Education, Inc.

Copyright @ 2008 Pearson Education, Inc.

Recall Interference

Constructive

Interference

Destructive

Interference

Their superposition produces a wave with amplitude 2*a*. This is constructive interference.

(b) Destructive interference

Their superposition produces a wave with zero amplitude. This is destructive interference.

(a) The sources are out of phase.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

(b) Two overlapped sound waves

The two waves are in phase ($\Delta \phi = 2\pi$ rad) and interfere constructively.

The sources are separated by half a wavelength.

As a result, the waves are in phase.

The two waves are in phase ($\Delta \phi = 2\pi$ rad) and interfere constructively.

(a) The sources are out of phase.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Superposition in 2D

Copyright © 2008 Pearson Education, Inc.

Questions

Beat Frequency

Doppler Effect

Copyright © 2008 Pearson Education, Inc.

Copyright @ 2008 Pearson Education, Inc.

To listener, λ unchanged but speed of wave is $v' = v_{\text{sound}} + v_{\text{listener}}$ $f_{\text{listener}} = (v_{\text{sound}} + v_{\text{listener}})/\lambda_{\text{source}}$ where $\lambda_{\text{source}} = v_{\text{sound}}/f_{\text{source}}$

$$f_{\text{listener}} = f_{\text{source}} \frac{v_{sound} + v_{\text{listener}}}{v_{sound}}$$

If listener is receding $f_{\text{listener}} = f_{\text{source}} \frac{v_{sound} - v_{\text{listener}}}{v_{sound}}$

$$f_{\text{listener}} = f_{\text{source}} \frac{v_{sound} \pm v_{\text{listener}}}{v_{sound} \mp v_{source}}$$

- These are speeds! No signs!
- Remember if source approaches listener or vice versa, listener hears a higher frequency.

The Human Ear

- Outer ear collects sound energy acting as an amplifier.
- Hearing trumpet used as a hearing aid.

- Two ears gives us directional to sounds. Turn ear in direction of sound to pin down direction.
- Swivelling ears also work well for some animals.

- At f > 4000 Hz, brain uses intensity difference (one ear is in sound shadow).
- At f < 1000 Hz, no shadow b/c diffraction waves bend around head, brain uses time difference between paths
- Between 1000 & 4000 Hz, accuracy declines. Methods don't appreciably overlap.

- Ear canal is a tube open at one end.
- Has a resonant frequency.
- Systems with resonance are more sensitive at those frequencies than at others.
- Any sign of this in human hearing?

- Eardrum separates outer and middle ear
- Middle air contains fluid.
- Exterior pressure can change quickly (planes, swimming).
 Eustachian tube leads to mouth. Allows you to equalize pressure.
- May be slow to open popping in ears.
- Ossicles are 3 small bones acting as a mechanical amplifier connecting eardrum to inner ear.

- Inner air semicircular canals are horizontalvertical detectors for balance
- Cochlea had little hairs sensitive to different vibrational frequency.
- Hairs convert auditory to electrical signal sent along auditory nerve.
- Vibrations also come to cochlea from conduction through bones of skull.
- Your recorded voice sounds different to you because it lacks the conducted sound.

Echolocation

- Speed of sound is constant
- It you send out a sound pulse at speed *v*, and the echo returns in time *t*, distance is
- $d = v \times \frac{1}{2t}$
- Bats, dolphins, whales, humans (using sonar & ultrasound imaging)
- Doppler shift let's you know if object is approaching/receding