
 

 

Checking Validity of Uncertainty Assumptions: 
Error Bars and Best-Fit Lines 

 
 

When we make a measurement, we give the range of values A ± ∆A that we expect all 
subsequent measurements to fall within.  The distribution of these measurements might look like 
Figure 1.   If we make enough measurements, statistics tells us that the distribution should be 
Gaussian, Figure 2.  In general, we expect most of our measurements to be near the principle 
value of our initial measurement with a few lying farther out.  However, if our estimate of our 
uncertainty was correct they should all fall with the range given by our error bars. 

 
The same distribution should hold when we draw a straight line through a graph of a set of data 
points.  The best-fit line is an average or mean of the data, so the distribution of the data points 
about the best-fit line should also be Gaussian.  This means that if we examine how far each data 
point is from the best-fit line, its deviation from the best-fit line, we would expect most of the 
deviations to be small as most data should cluster near the average.  However, a few data points 
would lie farther out. 
 
We can use this behaviour to tell us two things.  First, it let’s us know how reasonable our 
uncertainty estimates were.  If the deviation is about the same size as the error bars, then our 
estimate was reasonable.  If the deviation is much smaller than our error bars, we have 
overestimated the error.  If the deviation is much larger, then we have either underestimated the 
size of the uncertainty or have neglected a source of error.  Second, as a consequence of the first 
point, we can also say whether the uncertainty we find in the slope and intercept of the straight 
line is reasonable, underestimated, or overestimated.   
 
So by looking at our graph we can tell that we have good data and, as a result, can confidently 
expect our results to agree with accepted values. 
 
 

Initial Measurement
With Error Bars

La
te

r M
ea

su
re

m
en

ts

Figure 1. Figure 2.

N
um

be
r o

f O
cc

ur
en

ce
s

Value

Mean

Gaussian Distribution



 

 

Examples 
 
(a) 

Pressure of a Gas 

y = 2.7611x + 728.4
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In the “Pressure of a Gas” graph the maximum deviation of a data point from the best-fit line is 
approximately the same size of the error bar.  The assumption of uncertainty seems reasonable.  
We expect good results. 
 
(b) 

Uniform Straight Line Motion 

y = 31.777x + 19.19
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In the “Uniform Straight Line Motion” graph, the errorbars, and hence the uncertainties, have 
been overestimated by about a factor of two. 
 
(c) 

Friction 

y = 0.6588x - 1.4887
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In the “Friction” graph, the errorbars, and hence the uncertainties, have been underrestimated by 
about a factor of about three. 
 
 
Exercises 
 
For the following graphs, indicate if the uncertainties are correct, underestimated or 
overestimated.  If underestimated or overestimated, say by how much. 
 

Hooke's Law #1

y = 27.976x + 0.0387
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Voltage across a Capacitor 

y = -0.1056x + 2.4949
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(b)

 
 

Electron Beam in a Magnetic Field

y = 12.706x + 9.3411
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(c)

 
 

Transformation of Energy 

y = 1042.2x + 59.774
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