
• Datatypes (char, int, float)

• Math operations (+, -, *, /, etc)

• Loops

• Conditional statements

• Comments

• Libraries

• File structure

You are expected to known basic programming

Readability!

• Naming variables and functions for clarity

– oven_temperature not t

– ConvertFahrenheitToCelsius()

– #Define H2O_BoilingPoint 100

Your code will be marked for readability!

Number data types

• float (decimal numbers)

• long, int, char (integers)

– unsigned (0 and positive integers only)

– signed (all integers)

#include <stdio.h> // library that contains

 // printf() code

void main(void) // must have main()!

{

int i = 15, j, k;

j = 22;

k = i+j;

printf(“Sum of two numbers %i and %i is %i”,

i , j, k);

}

Output on display:

Sum of two numbers 15 and 22 is 37

#include <stdio.h> // library that contains printf() code

int QuadraticEquation(int a, int b, int c, int x); //prototype

void MyPrintFunction(int value); //prototype

void main(void) // must have main()!

{

int i = 2, j = 4, k = -2;

int x = 3, result;

result = QuadraticEquation(i, j, k, x);

MyPrintFunction(result);

}

// Evaluate a quadratic equation //

int QuadraticEquation(int a, int b, int c, int x)

{

 int value;

 value = a*x*x + b*x + c;

 return value;

}

// Print only positive results //

void MyPrintFunction(int value)

{

 if (value >= 0)

 printf(“Result is %i”, value);

 else

 printf(“Result is negative”);

}

Output on display:

Result is 28

myfile.c

#include “myfunctions.h” // for the functions called below

void main(void) // must have main()!

{

int i = 2, j = 4, k = -2;

int x = 3, result;

result = QuadraticEquation(i, j, k, x);

MyPrintFunction(result);

}

int QuadraticEquation(int a, int b, int c, int x); //prototype

void MyPrintFunction(int value); //prototype

#include “myfunction.h”

#include <stdio.h> // contains printf()

// Evaluate a quadratic equation //

int QuadraticEquation(int a, int b, int c, int x)

{

 int value;

 value = a*x*x + b*x + c;

 return value;

}

// Print only positive results //

void MyPrintFunction(int value)

{

 if (value >= 0)

 printf(“Result is %i”, value);

 else

 printf(“Result is negative”);

}

myfile.c

myfunctions.h

myfunctions.c

Questions

Questions.pptx

Libraries

A collection of related functions in a C file and the

associated header file is usually called a library.

In group work, large projects are split into smaller

amounts with different members of the group

assigned to code different libraries. Usually,

although we won’t be doing it, the C file is

compiled to a .o or object file which people cannot

read. The header file is simply a text file so it is

important that comments and instructions to users

of the library be included here.

• Headers must end with a blank line. Leave it out and you can get

error messages that point to the wrong place in the program usually a

line with no problem.

• Header mostly contain function prototypes but may also have useful

#define statements.

• Header functions should not contain #include directives to other

libraries.

• The source C file and the header file must have the same name.

• Both the source C file and the header must be added to your project

files.

• The source C file must #include its own header file before any of the

code for the functions. If the functions call other functions from

outside that C file, you must also #include the appropriate headers for

those libraries. For example if your function in your library calls

printf(), you must have #include <stdio.h> in your source C file.

/* PIC18F4525 program shell . It does nothing. */

#include <xc.h> // information specific to this chip

// standard configuration statements for this course

#pragma config WDT = OFF

#pragma config OSC = INTIO7 // puts osc/4 on pin 14 to check freq

#pragma config MCLRE = OFF

#pragma config LVP = OFF

#pragma config PBADEN = OFF

int main(void)

{

 /* put instructions that are to run only once here */

while(1) /* this while loop runs forever */

 {

 /* put instructions that are to run continuously here */

 }

return 0; // not reachable

}

PIC

• Designed to run continuously

• If power is lost, will automatically restart

• Why is this a good idea?

When you write a program!

• What steps need to be run only once?

 (usually setup or configuration)

• What steps need to be run continuously?

 (monitoring and/or response to input)

Project Development

• Think about the logic

 sketch pseudo-code or flowchart

• Modularize

 write and test small functions

Sketch a flowchart to get dressed in morning.

Look in mirror

Are you wearing

clothing_article = = underwear

Open underwear

drawer

Clean

underwear?

Put on

underwear

Take old pair

from hamper.

Turn inside out

Proceed to

next step

Next clothing_article = socks

N
Y

N
Y

Use function and variablenames for clarity

Look_In_Mirror();

clothing_article = WhatAreYouWearing();

If(clothing_article == underwear)

 {

 ChooseSocks()

 }

else

 {

 OpenDrawer();

 underwear_status = CheckUnderwear()

 if (underwear_status = = clean)

 Put_on_underwear()

 else

 TurnUnderwearInsidetOut()

 ….

